Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 918
Filtrar
1.
Inflamm Res ; 73(4): 531-539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498178

RESUMO

Metabolic remodeling is a key feature of macrophage activation and polarization. Recent studies have demonstrated the role of tricarboxylic acid (TCA) cycle metabolites in the innate immune system. In the current review, we summarize recent advances in the metabolic reprogramming of the TCA cycle during macrophage activation and polarization and address the effects of these metabolites in modulating macrophage function. Deciphering the crosstalk between the TCA cycle and the immune response might provide novel potential targets for the intervention of immune reactions and favor the development of new strategies for the treatment of infection, inflammation, and cancer.


Assuntos
Ciclo do Ácido Cítrico , Macrófagos , Ciclo do Ácido Cítrico/fisiologia , Macrófagos/metabolismo
2.
Artigo em Alemão | MEDLINE | ID: mdl-38354729

RESUMO

Immunometabolism is a fascinating field of research that investigates the interactions between metabolic processes and the immune response. This intricate connection plays a pivotal role in regulating inflammatory reactions and consequently exerts a significant impact on the course of sepsis. The proinflammatory response during an immune reaction is closely tied to a high energy demand in immune cells. As a result, proinflammatory immune cells rapidly require substantial amounts of energy in the form of ATP, necessitating a fundamental and swift shift in their metabolism, i.e., their means of generating energy. This entails a marked increase in glycolysis within the proinflammatory response, thereby promptly meeting the energy requirements and providing essential metabolic building blocks for the biosynthesis of macromolecules. Alongside glycolysis, there is heightened activity in the pentose phosphate pathway (PPP). The PPP significantly contributes to NADPH production within the cell, thus maintaining redox equilibrium. Elevated PPP activity consequently leads to an increased NADPH level, resulting in enhanced production of reactive oxygen species (ROS) and nitric oxide (NO). While these molecules are crucial for pathogen elimination, an excess can also induce tissue damage. Simultaneously, there are dual interruptions in the citric acid cycle. In the cellular resting state, the citric acid cycle acts as a sort of "universal processor", where metabolic byproducts of glycolysis, fatty acid breakdown, and amino acid degradation are initially transformed into NADH and FADH2, subsequently yielding ATP. While the citric acid cycle and its connected oxidative phosphorylation predominantly generate energy at rest, it becomes downregulated in the proinflammatory phase of sepsis. The two interruptions lead to an accumulation of citrate and succinate within cells, reflecting mitochondrial dysfunction. Additionally, the significantly heightened glycolysis through fermentation yields lactate, a pivotal metabolite for sepsis diagnosis and prognosis. Conversely, cells in an anti-inflammatory state revert to a metabolic profile akin to the resting state: Glycolysis is attenuated, PPP is suppressed, and the citric acid cycle is reactivated. Of particular interest is that not only does the immune reaction influence metabolic pathways, but this connection also operates in reverse. Thus, modulation of metabolic pathways also modulates the immunity of the corresponding cell and thereby the state of the immune system itself. This could potentially serve as an intriguing avenue in sepsis therapy.


Assuntos
Glicólise , Sepse , Humanos , NADP , Glicólise/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Trifosfato de Adenosina
3.
Nat Commun ; 14(1): 4943, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582831

RESUMO

Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.


Assuntos
Proteínas de Drosophila , Drosophila , Metabolismo Energético , Fatores de Transcrição , Proteínas Supressoras de Tumor , Animais , Camundongos , Ciclo do Ácido Cítrico/fisiologia , Glicólise , Músculos/metabolismo , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Drosophila/genética , Fatores de Transcrição/genética
4.
Adv Biol (Weinh) ; 7(8): e2200238, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37341441

RESUMO

As one of the iconic pathways in plant metabolism, the tricarboxylic acid (TCA) cycle is commonly thought to not only be responsible for the oxidization of respiratory substrate to drive ATP synthesis but also provide carbon skeletons to anabolic processes and contribute to carbon-nitrogen interaction and biotic stress responses. The functions of the TCA cycle enzymes are characterized by a saturation transgenesis approach, whereby the constituent expression of proteins is knocked out or reduced in order to investigate their function in vivo. The alteration of TCA cycle enzyme expression results in changed plant growth and photosynthesis under controlled conditions. Moreover, improvements in plant performance and postharvest properties are reported by overexpression of either endogenous forms or heterologous genes of a number of the enzymes. Given the importance of the TCA cycle in plant metabolism regulation, here, the function of each enzyme and its roles in different tissues are discussed. This article additionally highlights the recent finding that the plant TCA cycle, like that of mammals and microbes, dynamically assembles functional substrate channels or metabolons and discusses the implications of this finding to the current understanding of the metabolic regulation of the plant TCA cycle.


Assuntos
Ciclo do Ácido Cítrico , Plantas , Animais , Plantas/genética , Ciclo do Ácido Cítrico/fisiologia , Fotossíntese/genética , Carbono , Mamíferos
5.
Plant Commun ; 4(5): 100635, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37291828

RESUMO

Protein complexes are important for almost all biological processes. Hence, to fully understand how cells work, it is also necessary to characterize protein complexes and their dynamics in response to various cellular cues. Moreover, the dynamics of protein interaction play crucial roles in regulating the (dis)association of protein complexes and, in turn, regulating biological processes such as metabolism. Here, mitochondrial protein complexes were investigated by blue native PAGE and size-exclusion chromatography under conditions of oxidative stress in order to monitor their dynamic (dis)associations. Rearrangements of enzyme interactions and changes in protein complex abundance were observed in response to oxidative stress induced by menadione treatment. These included changes in enzymatic protein complexes involving γ-amino butyric acid transaminase (GABA-T), Δ-ornithine aminotransferase (Δ-OAT), or proline dehydrogenase 1 (POX1) that are expected to affect proline metabolism. Menadione treatment also affected interactions between several enzymes of the tricarboxylic acid (TCA) cycle and the abundance of complexes of the oxidative phosphorylation pathway. In addition, we compared the mitochondrial complexes of roots and shoots. Considerable differences between the two tissues were observed in the mitochondrial import/export apparatus, the formation of super-complexes in the oxidative phosphorylation pathway, and specific interactions between enzymes of the TCA cycle that we postulate may be related to the metabolic/energetic requirements of roots and shoots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Vitamina K 3/farmacologia , Vitamina K 3/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo do Ácido Cítrico/fisiologia
6.
Mol Psychiatry ; 28(10): 4138-4150, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37188779

RESUMO

Depression is a mental illness frequently accompanied by disordered energy metabolism. A dysregulated hypothalamus pituitary adrenal axis response with aberrant glucocorticoids (GCs) release is often observed in patients with depression. However, the associated etiology between GCs and brain energy metabolism remains poorly understood. Here, using metabolomic analysis, we showed that the tricarboxylic acid (TCA) cycle was inhibited in chronic social defeat stress (CSDS)-exposed mice and patients with first-episode depression. Decreased mitochondrial oxidative phosphorylation was concomitant with the impairment of the TCA cycle. In parallel, the activity of pyruvate dehydrogenase (PDH), the gatekeeper of mitochondrial TCA flux, was suppressed, which is associated with the CSDS-induced neuronal pyruvate dehydrogenase kinase 2 (PDK2) expression and consequently enhanced PDH phosphorylation. Considering the well-acknowledged role of GCs in energy metabolism, we further demonstrated that glucocorticoid receptors (GR) stimulated PDK2 expression by directly binding to its promoter region. Meanwhile, silencing PDK2 abrogated glucocorticoid-induced PDH inhibition, restored the neuronal oxidative phosphorylation, and improved the flux of isotope-labeled carbon (U-13C] glucose) into the TCA cycle. Additionally, in vivo, pharmacological inhibition and neuron-specific silencing of GR or PDK2 restored CSDS-induced PDH phosphorylation and exerted antidepressant activities against chronic stress exposure. Taken together, our findings reveal a novel mechanism of depression manifestation, whereby elevated GCs levels regulate PDK2 transcription via GR, thereby impairing brain energy metabolism and contributing to the onset of this condition.


Assuntos
Metabolismo Energético , Complexo Piruvato Desidrogenase , Humanos , Camundongos , Animais , Complexo Piruvato Desidrogenase/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Encéfalo/metabolismo , Fosforilação
7.
Mitochondrion ; 70: 59-102, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863425

RESUMO

Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.


Assuntos
Metabolismo Energético , Complexo Piruvato Desidrogenase , Animais , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Fosforilação Oxidativa , Ciclo do Ácido Cítrico/fisiologia , Glicólise
8.
Elife ; 122023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883551

RESUMO

The oxidative tricarboxylic acid (TCA) cycle is a central mitochondrial pathway integrating catabolic conversions of NAD +to NADH and anabolic production of aspartate, a key amino acid for cell proliferation. Several TCA cycle components are implicated in tumorigenesis, including loss-of-function mutations in subunits of succinate dehydrogenase (SDH), also known as complex II of the electron transport chain (ETC), but mechanistic understanding of how proliferating cells tolerate the metabolic defects of SDH loss is still lacking. Here, we identify that SDH supports human cell proliferation through aspartate synthesis but, unlike other ETC impairments, the effects of SDH inhibition are not ameliorated by electron acceptor supplementation. Interestingly, we find aspartate production and cell proliferation are restored to SDH-impaired cells by concomitant inhibition of ETC complex I (CI). We determine that the benefits of CI inhibition in this context depend on decreasing mitochondrial NAD+/NADH, which drives SDH-independent aspartate production through pyruvate carboxylation and reductive carboxylation of glutamine. We also find that genetic loss or restoration of SDH selects for cells with concordant CI activity, establishing distinct modalities of mitochondrial metabolism for maintaining aspartate synthesis. These data therefore identify a metabolically beneficial mechanism for CI loss in proliferating cells and reveal how compartmentalized redox changes can impact cellular fitness.


Assuntos
Ácido Aspártico , Succinato Desidrogenase , Humanos , Succinato Desidrogenase/metabolismo , Ácido Aspártico/metabolismo , NAD/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Oxirredução
9.
Comput Biol Chem ; 104: 107828, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36893566

RESUMO

The bacteria Mycobacterium tuberculosis is responsible for the infectious disease Tuberculosis. Targeting the tubercule bacteria is an important challenge in developing the antimycobacterials. The glyoxylate cycle is considered as a potential target for the development of anti-tuberculosis agents, due to its absence in the humans. Humans only possess tricarboxylic acid cycle, while this cycle gets connected to glyoxylate cycle in microbes. Glyoxylate cycle is essential to the Mycobacterium for its growth and survival. Due to this reason, it is considered as a potential therapeutic target for the development of anti-tuberculosis agents. Here, we explore the effect on the behavior of the tricarboxylic acid cycle, glyoxylate cycle and their integrated pathway with the bioenergetics of the Mycobacterium, under the inhibition of key glyoxylate cycle enzymes using Continuous Petri net. Continuous Petri net is a special Petri net used to perform the quantitative analysis of the networks. We first study the tricarboxylic acid cycle and glyoxylate cycle of the tubercule bacteria by simulating its Continuous Petri net model under different scenarios. Both the cycles are then integrated with the bioenergetics of the bacteria and the integrated pathway is again simulated under different conditions. The simulation graphs show the metabolic consequences of inhibiting the key glyoxylate cycle enzymes and adding the uncouplers on the individual as well as integrated pathway. The uncouplers that inhibit the synthesis of adenosine triphosphate, play an important role as anti-mycobacterials. The simulation study done here validates the proposed Continuous Petri net model as compared with the experimental outcomes and also explains the consequences of the enzyme inhibition on the biochemical reactions involved in the metabolic pathways of the mycobacterium.


Assuntos
Mycobacterium tuberculosis , Humanos , Metabolismo Energético , Ciclo do Ácido Cítrico/fisiologia , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Glioxilatos/metabolismo , Glioxilatos/farmacologia
10.
Nature ; 614(7947): 349-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725930

RESUMO

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Assuntos
Trifosfato de Adenosina , Neoplasias da Mama , Ciclo do Ácido Cítrico , Desaceleração , Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glicólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Especificidade de Órgãos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas
11.
J Biol Chem ; 299(2): 102838, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581208

RESUMO

The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function of oxidizing nutrients to support cellular bioenergetics. More recently, it has become evident that TCA cycle behavior is dynamic, and products of the TCA cycle can be co-opted in cancer and other pathologic states. In this review, we revisit the TCA cycle, including its potential origins and the history of its discovery. We provide a detailed accounting of the requirements for sustained TCA cycle function and the critical regulatory nodes that can stimulate or constrain TCA cycle activity. We also discuss recent advances in our understanding of the flexibility of TCA cycle wiring and the increasingly appreciated heterogeneity in TCA cycle activity exhibited by mammalian cells. Deeper insight into how the TCA cycle can be differentially regulated and, consequently, configured in different contexts will shed light on how this pathway is primed to meet the requirements of distinct mammalian cell states.


Assuntos
Ciclo do Ácido Cítrico , Metabolismo Energético , Animais , Ciclo do Ácido Cítrico/fisiologia , Mamíferos
12.
Mol Cell ; 82(23): 4537-4547.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327975

RESUMO

Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.


Assuntos
Malato Desidrogenase , NAD , NAD/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Oxirredução , Ciclo do Ácido Cítrico/fisiologia , Respiração
13.
J Proteome Res ; 21(10): 2385-2396, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074008

RESUMO

It is generally believed that vascular endothelial cells (VECs) rely on glycolysis instead of the tricarboxylic acid (TCA) cycle under both normoxic and hypoxic conditions. However, the metabolic pattern of human umbilical vein endothelial cells (HUVECs) under extreme ischemia (hypoxia and nutrient deprivation) needs to be elucidated. We initiated a lethal ischemic model of HUVECs, performed proteomics and bioinformatics, and verified the metabolic pattern shift of HUVECs. Ischemic HUVECs displayed extensive aerobic respiration, including upregulation of the TCA cycle and mitochondrial respiratory chain in mitochondria and downregulation of glycolysis in cytoplasm. The TCA cycle was enhanced while the cell viability was decreased through the citrate synthase pathway when substrates of the TCA cycle (acetate and/or pyruvate) were added and vice versa when inhibitors of the TCA cycle (palmitoyl-CoA and/or avidin) were applied. The inconsistency of the TCA cycle level and cell viability suggested that the extensive TCA cycle can keep cells alive yet generate toxic substances that reduce cell viability. The data revealed that HUVECs depend on "ischemic TCA cycle" instead of glycolysis to keep cells alive under lethal ischemic conditions, but consideration must be given to relieve cell injury.


Assuntos
Ciclo do Ácido Cítrico , Células Endoteliais da Veia Umbilical Humana , Isquemia , Avidina , Citrato (si)-Sintase , Ciclo do Ácido Cítrico/fisiologia , Coenzima A , Humanos , Hipóxia , Ácido Pirúvico , Ácidos Tricarboxílicos
14.
FASEB J ; 36(10): e22546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36106538

RESUMO

The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.


Assuntos
Microbioma Gastrointestinal , Ácido Succínico , Animais , Ciclo do Ácido Cítrico/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos , Camundongos , Succinatos/metabolismo , Ácido Succínico/metabolismo
15.
Med ; 3(11): 792-811.e12, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108629

RESUMO

BACKGROUND: Brain cancer incidence and mortality rates are greater in males. Understanding the molecular mechanisms that underlie those sex differences could improve treatment strategies. Although sex differences in normal metabolism are well described, it is currently unknown whether they persist in cancerous tissue. METHODS: Using positron emission tomography (PET) imaging and mass spectrometry, we assessed sex differences in glioma metabolism in samples from affected individuals. We assessed the role of glutamine metabolism in male and female murine transformed astrocytes using isotope labeling, metabolic rescue experiments, and pharmacological and genetic perturbations to modulate pathway activity. FINDINGS: We found that male glioblastoma surgical specimens are enriched for amino acid metabolites, including glutamine. Fluoroglutamine PET imaging analyses showed that gliomas in affected male individuals exhibit significantly higher glutamine uptake. These sex differences were well modeled in murine transformed astrocytes, in which male cells imported and metabolized more glutamine and were more sensitive to glutaminase 1 (GLS1) inhibition. The sensitivity to GLS1 inhibition in males was driven by their dependence on glutamine-derived glutamate for α-ketoglutarate synthesis and tricarboxylic acid (TCA) cycle replenishment. Females were resistant to GLS1 inhibition through greater pyruvate carboxylase (PC)-mediated TCA cycle replenishment, and knockdown of PC sensitized females to GLS1 inhibition. CONCLUSION: Our results show that clinically important sex differences exist in targetable elements of metabolism. Recognition of sex-biased metabolism may improve treatments through further laboratory and clinical research. FUNDING: This work was supported by NIH grants, Joshua's Great Things, the Siteman Investment Program, and the Barnard Research Fund.


Assuntos
Neoplasias Encefálicas , Glioma , Feminino , Animais , Humanos , Masculino , Camundongos , Glutamina/metabolismo , Caracteres Sexuais , Ácido Glutâmico/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Ciclo do Ácido Cítrico/fisiologia , Piruvato Carboxilase/metabolismo
16.
Commun Biol ; 5(1): 467, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577894

RESUMO

Mitochondrial dysfunction is a key driver of diabetes and other metabolic diseases. Mitochondrial redox state is highly impactful to metabolic function but the mechanism driving this is unclear. We generated a transgenic mouse which overexpressed the redox enzyme Thioredoxin Reductase 2 (TrxR2), the rate limiting enzyme in the mitochondrial thioredoxin system. We found augmentation of TrxR2 to enhance metabolism in mice under a normal diet and to increase resistance to high-fat diet induced metabolic dysfunction by both increasing glucose tolerance and decreasing fat deposition. We show this to be caused by increased mitochondrial function which is driven at least in part by enhancements to the tricarboxylic acid cycle and electron transport chain function. Our findings demonstrate a role for TrxR2 and mitochondrial thioredoxin as metabolic regulators and show a critical role for redox enzymes in controlling functionality of key mitochondrial metabolic systems.


Assuntos
Doenças Metabólicas , Tiorredoxina Redutase 2 , Animais , Camundongos , Ciclo do Ácido Cítrico/fisiologia , Transporte de Elétrons/fisiologia , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Tiorredoxina Redutase 2/genética , Tiorredoxina Redutase 2/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
18.
Nutrients ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458149

RESUMO

Neurodegenerative diseases (ND) are being increasingly studied owing to the increasing proportion of the aging population. Several potential compounds are examined to prevent neurodegenerative diseases, including Curcumae radix, which is known to be beneficial for inflammatory conditions, metabolic syndrome, and various types of pain. However, it is not well studied, and its influence on energy metabolism in ND is unclear. We focused on the relationship between ND and energy metabolism using Curcumae radix extract (CRE) in cells and animal models. We monitored neurodegenerative markers and metabolic indicators using Western blotting and qRT-PCR and then assessed cellular glycolysis and metabolic flux assays. The levels of Alzheimer's disease-related markers in mouse brains were reduced after treatment with the CRE. We confirmed that neurodegenerative markers decreased in the cerebrum and brain tumor cells following low endoplasmic reticulum (ER) stress markers. Furthermore, glycolysis related genes and the extracellular acidification rate decreased after treatment with the CRE. Interestingly, we found that the CRE exposed mouse brain and cells had increased mitochondrial Tricarboxylic acid (TCA) cycle and Oxidative phosphorylation (OXPHOS) related genes in the CRE group. Curcumae radix may act as a metabolic modulator of brain health and help treat and prevent ND involving mitochondrial dysfunction.


Assuntos
Ciclo do Ácido Cítrico , Glicólise , Animais , Ciclo do Ácido Cítrico/fisiologia , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Raízes de Plantas/metabolismo
19.
J Vis Exp ; (181)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35404356

RESUMO

Mitochondria host the machinery for the tricarboxylic acid (TCA) cycle and electron transport chain (ETC), which generate adenosine triphosphate (ATP) to maintain energy homeostasis. Glucose, fatty acids, and amino acids are the major energy substrates fueling mitochondrial respiration in most somatic cells. Evidence shows that different cell types may have a distinct preference for certain substrates. However, substrate utilization by various cells in the skeleton has not been studied in detail. Moreover, as cellular metabolism is attuned to physiological and pathophysiological changes, direct assessments of substrate dependence in skeletal cells may provide important insights into the pathogenesis of bone diseases. The following protocol is based on the principle of carbon dioxide release from substrate molecules following oxidative phosphorylation. By using substrates containing radioactively labeled carbon atoms (14C), the method provides a sensitive and easy-to-use assay for the rate of substrate oxidation in cell culture. A case study with primary calvarial preosteoblasts versus bone marrow-derived macrophages (BMMs) demonstrates different utilization of the main substrates between the two cell types.


Assuntos
Ciclo do Ácido Cítrico , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Ácidos Graxos/metabolismo , Oxirredução
20.
Mol Med Rep ; 25(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35244187

RESUMO

As an intermediate of the tricarboxylic acid cycle, also known as 2­oxoglutarate, α­ketoglutaric acid (AKG) plays an important role in maintaining physiological functions and cell metabolism. AKG is involved in both energy metabolism, and carbon and nitrogen metabolism; thus, exhibiting a variety of functions. Moreover, AKG plays an important role in various systems of the body. Results of previous research indicated that AKG may act as a regulator in the progression of a variety of diseases; thus, it exhibits potential as a novel drug for the clinical treatment of age­related diseases. The present review aimed to summarize the latest research progress and potential clinical applications of AKG and provided novel directions and scope for future research.


Assuntos
Ciclo do Ácido Cítrico , Ácidos Cetoglutáricos , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Ácidos Cetoglutáricos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...